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A note on a simplified model of ship yawing in steep following seas

K.J. Spyrou
National Technical University of Athens, Greece

ABSTRACT: The possibility of realizing a mechanism of parametric instability concerning the horizontal
plane dynamics of a ship is discussed. The background of such investigations is given first that goes back to
more than fifty years. Mathematical models based of ship yawing in quartering waves are developed: one such
model is based on the standard manoeuvring equations for sway and yaw. Another one is derived from the
simplified Nomoto equation on the basis of a more phenomenological-type viewpoint. Requirements for the
“equivalence” between these two models are identified. Necessary conditions for ensuring yaw stability that
combine parameters of the ship, of the waves and of the steering control system are also produced.

1 REVISITING AN OLD PROBLEM

The line of argument behind the present note is traced
back to the seminal paper of Weinblum & St Denis
(1950) who had realised that the fundamental equa-
tions governing ship manoeuvring in waves feature
time-dependent coefficients i.e. for harmonic waves
they should be Hill’s-type (in their more rudimentary
form, Mathieu-type). Soon however this idea was chal-
lenged: Rydill (1959) suggested that, in a consistent
linear approach, the wave slope should be treated as a
small perturbation parameter, likewise heading’s devi-
ation from the intended direction of motion. Thus, at
first-order approximation, the product of wave slope
and heading’s deviation should be eliminated. It then
accrues that wave excitations need not be calculated at
the time-varying instantaneous heading ψ of the ship
but only at the desired heading that is a fixed control
parameter. Subsequently, instead of a system featur-
ing combined direct and parametric excitations in the
directions of sway and yaw, a system that is purely
directly excited is obtained.

Rydill had felt that the Ak ψ terms produced ‘unrea-
sonable’ solutions. Weinblum in his discussion of
Rydill’s paper was critical about the prospect of such
an approach for explaining extreme phenomena of ship
behaviour in steep waves, especially at low encounter
frequencies. Uncomfortable with the linearization
were apparently also Wahab & Swaan (1964) who,
in their early theory of broaching, calculated the wave
excitations for various longitudinal positions of a ship
on the wave, with reference to the instantaneous head-
ing; i.e. terms Ak ψ were kept. Parenthetically, their
approach was restrictive in a different sense: by tack-
ling only zero-frequency-of-encounter scenarios, the
dynamics owed to the overtaking waves remained out

of scope. In general it is not too difficult to call
upon a number of arguments supporting the inclu-
sion of the Ak ψ term (such arguments are collected in
Appendix I).

Numerical predictions of resonant-type broaching
behaviour in astern seas revived the discussions about
parametric-type yawing (Spyrou 1997). Such predic-
tions seem to corroborate experiential reports of a
“cumulative” type of broaching, alleged to arise in very
steep astern seas and marked by the gradual build-up
of yaw amplitude in successive wave encounters. This
however is reminiscent of a manifestation of yaw res-
onance. Such a version of broaching should represent
a hazard for larger, displacement-type, vessels oper-
ating with moderate speed that is, yet, well below the
wave celerity of long waves.

The introduction of a phenomenological heading-
dependent wave excitation term to the simplified
Nomoto equation, combined with a standard rudder
control law, yield a Mathieu-type yaw equation of the
instantaneous heading with the following noteworthy
features:

– the parametric term represents basically the inten-
sity of wave excitation;

– damping is governed by the differential term of
rudder control;

– a bias term appears at the right-hand-side that
depends on the desired heading.

The condition of stability at principal resonance
of this damped Mathieu-type system is provided by
a well-known relationship between the damping ratio
and the parametric amplitude (e.g. Berge et al. 1984).
Unfortunately though, due to the phenomenological
nature of this yaw equation, it is not clear how to deter-
mine the parametric amplitude from wave pressure
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integrations on the hull (or from direct force measure-
ments on “captive” models).This is the main point that
is clarified in the present note.

Tackling the problem from another end, one might
had opted to start from the linear pair of sway and
yaw equations of standard manoeuvring theory; and
thereafter to incorporate wave excitations in the sway
and yaw directions, whose calculation or measure-
ment is straight-forward. Finally decouple the system
to obtain a single 3rd or higher order equation of sin-
gle yaw with time-periodic coefficients. The stability
condition of this expanded system is another issue that
will be treated below. Firstly however we shall lay the
mathematical details linked to these two points of view.

2 CALCULATION OF THE AMPLITUDE OF
PARAMETRIC EXCITATION

The customary pair of linear sway, yaw equations,
without memory effect, can be written, after incorpora-
tion of wave excitation terms at their right-hand-sides,
indicated by subscript w, as follows:

Sway:

Primes indicate nondimensionalised quantities. Sym-
bols are used with their customary meaning in
manoeuvring theory. Wave loads in sway and yaw may
be expressed respectively, for small ψ, as follows:

We use a simple rudder control law with proportional
and differential gains and at this instance we disregard
delay:

With substitution of (2) and (3) into (1) and after sev-
eral standard transformations, it can be shown that
the above lead to the following 3rd order ordinary
differential equation of yaw (Spyrou 1997):

Immediately should be noticed the presence of
time-dependent coefficients in two places. These can
be calculated according to the following expressions,
assuming a body-fixed system of axes placed at the
ship’s centre of gravity (Spyrou 1997):

The expressions of phase angles are:

Obviously, the amplitudes of the parametric terms
should be functions of the wave profile.To simplify the
analysis, let us make from now on the (approximately
correct) assumption that the wave yaw moment is in
phase with the wave while the wave sway force is at
π/2. phase difference.

Suppose one had started from the simplified
Nomoto equation:

A heuristic wave yaw moment should be like:

where A′ is a phenomenological wave excitation coef-
ficient. Combination of the above with the control law
(2) produces the following alternative form of the yaw
equation:

In the above the amplitude A′ is unknown. In order to
determine this, we should deduce the relationship of
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A′ with the W ′, V ′, R′ terms of equation (4) which are
directly linked to hull geometry. To this end, all terms
of (9) were divided by k1K ′:

The same division applied to (4) yields:

For (9) to coincide approximately with (11), it suffices
thus to satisfy the following relations:

The first three conditions refer to still-water
behaviour of a ship with steering control and they can
be assumed as necessary for achieving correspondence
between the simplified and the full Nomoto equation.
The remaining set of three conditions encapsulates
the wave effect. W ′ should be a small quantity rela-
tively to customary values of k1K ′ even for extreme
waves. The same applies for the condition β ∼= 0. With
all other requirements (12) fulfilled, the amplitude of
wave excitation A′ should thus be determined simply
from the relationship:

A more elaborate investigation on this equivalence
using the Laplace transform of the two models is given
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Figure 1. Comparison of responses (continuous line cor-
responds to 3rd order model): U = 5 m/s, k1 = 3, k ′

2 = 1,
ψ0 = 0.1 rad, ψr = 0.1 rad.
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Figure 2. As above, with k1 = 3, k ′
2 = 1, ψ0 = 0.075 rad.
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Figure 3. As Fig. 1, with U = 7 m/s, k1 = 3.

in Appendix II. Comparisons between the 2nd and 3rd
order models in terms of the yaw angle (vertical axis)
as function of nondimensional time t(U/L) are shown
in Figures 1 to 5 for a medium size Japanese fish-
ing vessel. Differences arise mainly in the transient
part of yaw response. The speed influences behaviour
through the frequency of encounter that appears in
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Figure 4. As above, with U = 7 m/s, k1 = 1.
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Figure 5. As above, with ψ0 = 0.075 rad.

the expressions of indirect wave excitation R′, and
subsequently of A′.

3 CONDITIONS OF STABILITY OF “REDUCED
ORDER” SYSTEM

The conditions of stability of the reduced system (9)
are described below. As well-known, straight-line sta-
bility in calm-sea is guaranteed if the differential gain
satisfies the following inequality (see for example
Koyama 1972):

The above can be deduced directly from (9), by
requesting the term that plays the role of damping
to be positive. In following waves, a quasi-static loss
of course stability at zero frequency-of-encounter is
avoided, if the amplitude of the sinusoidal stiffness
term is less than one. This leads to the following
condition:

There is also a “dynamic” condition of stability
to be satisfied, concerning non-zero frequencies of
encounter. This safeguards against the occurrence of
parametric-type resonant instability of yaw. As is well
known, for a damped, parametrically excited linear
oscillator at exact principal resonance, the critical
(nondimensional) amplitude of parametric excitation
is 4 times the damping ratio (Berge et al. 1987). In the
vicinity of principal resonance the boundary is given
by the formula:

Strictly speaking, the above should hold true for
infinitesimal damping ratio. Nonetheless it is known
that (16) is still a good predictor of the critical para-
metric forcing as long as the damping ratio remains
relatively low. For controlled yaw motion the damp-
ing ratio ζ could be determined by the following
expression:

It should be observed that the denominator
√

k1K ′T ′
stands for the nondimensional yaw natural frequency
(it has a meaning only if there is angular feedback).
Yaw’s damping ratio increases linearly with k ′

2 and
reduces with the square root of k1. It is observed
that gain values determine to a large extent whether
the system’s damping ratio is low or high. For mod-
erate damping one might use the analytical formula
of Gunderson et al (1974), which however provides
only a crude prediction of the vertex of the insta-
bility region and is not really recommended (Leiber
& Risken 1988). The rule that the minimal paramet-
ric forcing which could create instability is about 4
times the damping ratio seems to work well even for
moderate damping values.

Let us assume that the selected gain values are rel-
atively insufficient and they produce for the system
a relatively low yaw damping ratio. In such a case
it would be valid to determine the critical paramet-
ric forcing from the simplified expression |hcrit | < 4ζ.
Then, by combining with (17) the following dynamic
stability condition is obtained:
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Figure 6. The condition of parametric yawing is produced
by the intersection of the curves of actual and critical h.
The position of these curves depends on proportional gain;
however that of hcr is very sensitive to the differential.

The above “dynamic” condition (18) may be contrasted
against the semi-static condition (15). The term in
brackets at the right-hand-side of (19), specifically
if it is larger or smaller than 1, determines whether
dynamic instability of yaw is incurred at higher or
lower waves compared to the semi-static scenario.
In other words, in a slightly damped system (which
grossly means a small k2) condition (1) is more strin-
gent that (15) while the opposite is likely to happen
at high damping. It is recalled that the A′ forcing
term depends, according to expression (13), on the
frequency of encounter and thus it depends also on
the Froude number where the ship operates at some
instant.

Parametric oscillations will arise if the critical level
of parametric excitation, provided for example by
expression (16) of hcr locus, is reached by the actual
parametric excitation h = A′/(k1K ′). This is depicted
qualitatively in Fig. 6. If the curves of critical and
actual h intersect, parametric oscillations should be
expected. It is notable that the proportional gain influ-
ences both curves. On the other hand, it is evident
that the distance of the two curves is very sensitive
to the differential gain. A small reduction of k2 bears
a disproportionally large effect on hcr . Furthermore,
strictly speaking, for a large k2 (where as a result the
damping ratio has become large), the layout of the
curve itself should change and expression (16) may no
longer be considered as valid. The (numerical) stabil-
ity diagram for arbitrary damping has been discussed
in Leiber & Risken (1988). In Figure 7 are collected
some characteristic boundaries that we have produced
numerically, spanning a wide range of damping ratios,
for unit natural frequency.

It is known that, the phenomenon of surge dynam-
ics known as surf-riding may occur at higher Froude
numbers. This region is indicated in Fig. 6 as grey. The
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Figure 7. Numerical boundary of parametric yawing for
large ζ. By a is meant the ratio 4ω2
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overlap of regions where different phenomena of insta-
bility concerning different directions of ship motions
could take place should be analysed before conclusions
are drawn for the susceptibility towards some kind of
instability.

4 CONCLUDING REMARKS

Whilst the mechanism of instability described above
is established theoretically, it is still unknown what
ship types and sizes could be prone for exhibiting it. It
is likely however that it is relevant for ships of larger
size. Use of the wave excitation term A′ [equation (13)]
should be done with caution, as the condition of equiv-
alence on which it is based could hold only for certain
ships. Therefore, further research will be required on
this. However one thing that may be said is that, in
comparison to a scenario of semi-static loss of stabil-
ity on the horizontal plane which would correspond to
the classical type of broaching, larger waves will be
required for this mechanism to be realised, due to the
large damping in yaw that normally exists. This could
be reversed however in case that very sloppy rudder
control is applied on the ship.
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APPENDIX I: SOME ARGUMENTS IN FAVOUR
OF RETAINING THE Ak ψ TERM

• Wave slope Ak is an independent parameter of the
problem while ψ is the dependent variable. The
amplitude of ψ should depend on the encountered
waves (i.e. Ak and the wave length to ship length
ratio λ/L), the method of steering and the intrinsic
hull and rudder characteristics. It is possible to have
small ψ for extreme Ak and vice versa.

• An upper limit of Ak is about πH/λ = π/7 ≈ 0.45
which is not a truly small quantity. It is notable that,
a steep wave with, say, λ/L = 1, H/λ = 1/10, brings
about an effect on sectional draught (assuming equi-
librium in the vertical direction) up to ±L/20 which
is of the order of ship draught in calm sea. There-
fore, even if the wave slope were taken as a small
quantity, the effect of wave profile on the submerged
part of the hull, which determines wave excitation,
can be quite significant.

• It is known that the wave yaw moment could change
significantly if the disturbance of the incident wave
for very low encounter frequency were included
in the calculations. According to Okhusu’s (1986)
calculation method, a two-fold increase of ampli-
tude, compared to the corresponding Froude-Krylov
value, may not be uncommon if all terms up to the
lowest order of magnitude are taken into account,
even if these are of higher order compared to
Froude-Krylov.

• Had one neglected terms with products of angle
and wave slope, parametric instability in roll due
to the wave contouring effect should have become
impossible too; which we know to be incorrect.

APPENDIX II: EQUIVANENCE OF MODELS
THROUGH THE LAPLACE TRANSFORM

Series expansion of the cos (ω′
et′) term of (1) gives:

We shall use the following well-known identity for the
derivative of the image function:

The Laplace transform of (5), after substitution of
(AII1) and use of (AII2), yields (we assumed that
ψ(0) = ψ′(0) = 0):

The above is recast as:

If we request ωe raised to 2 or higher to be approxi-
mately equal to zero the above becomes:

Similarly, we apply the Laplace transform for the parts
of equation (1), with the same assumptions:
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After some manipulation (AIII9) becomes:

To derive (AII10) we used the identity:

This relation is produced as follows:
The Laplace transform of t ψ̇ (t) is:

For a conventional (say sinusoidal–type) yaw response
ψ(t), the term lim

a→+∞ae−sa ψ(a) becomes zero for s > 0.

Therefore,

The above is easily extended to the general expression
(AII11). Also:

The Laplace transformed version of equation (1) is
then obtained:

By setting ω2
e or higher equal to zero the above

becomes:

In general, the angles σ1, ρ are small; hence prod-
ucts of their sine with ωe could be neglected. For
consistence we assume that cos σ1 ≈ cos ρ ≈ 0. Then
(AII16) becomes:

Therefore:

Series expansion of the above yields that the right-
hand-side is approximately equal to:
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Similarly for the simplified yaw equation (4):

To obtain identical leading-order terms the condition
thus is:

APPENDIX III: CONDITION OF INSTABILITY
FOR THE 3RD-ORDER MANOEUVRING
MODEL

One assumes the possibility the 3rd-rder system to
exhibit a mechanism of instability manifested by a
growing oscillatory yaw motion when the period of
encounter is about half the natural period in yaw. Let
us scale time by setting ωet = 2τ. Then

Substitution into (1) yields the following yaw
equation:

At this stage we omit the bias term at the right
hand side, i.e. b = 0 (which means also that ψr = 0).
The solution could be assumed to have the form
ψ ≈ ψ01eστ + ψ02eµτ cos (τ + ϑ). Let us seek the sta-
bility condition for the special case that, in the eigendi-
rection associated with eigenvalue σ there is strong
contraction i.e. the system could show instability only
in an oscillatory mode as the real part µ of the complex

pair of eigenvalues turns positive. In other words we
shall assume that after short time the solution almost
coincides with the expression ψ ≈ ψ02eµτ cos (τ + ϑ)
which is thus the expression to be substituted in (10).
Then, after some manipulation, one obtains:

Separating sin τ from cos τ terms and neglecting sines
and cosines of 3τ leads to having to satisfy the
equation:

For the left-hand-side to be equal to zero for all τ,
the coefficients of the sine and cosine terms should be
zero. These two conditions lead to the following pair
of equations in terms of sin ϑ, cos ϑ:
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The system of homogeneous equations with
unknowns sin ϑ and cos ϑ receives a solution only if
the determinant is zero, i.e.:

The condition of marginal stability arises when µ = 0:

Going back to the original manoeuvring parameters
we obtain:

Given that the angles σ1, σ2, ρ, µ are small, the fol-
lowing condition of stability threshold is also approx-
imately valid:

93




	Welcome page
	Table of contents
	Author index
	Search
	Help
	Shortcut keys
	Page up
	Page down
	First page
	Last page
	Previous paper
	Next paper
	Zoom In
	Zoom Out
	Print




